Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(10): e2308255121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412125

RESUMO

MicroRNAs (miRNA) associate with Argonaute (AGO) proteins and repress gene expression by base pairing to sequences in the 3' untranslated regions of target genes. De novo coding variants in the human AGO genes AGO1 and AGO2 cause neurodevelopmental disorders (NDD) with intellectual disability, referred to as Argonaute syndromes. Most of the altered amino acids are conserved between the miRNA-associated AGO in Homo sapiens and Caenorhabditis elegans, suggesting that the human mutations could disrupt conserved functions in miRNA biogenesis or activity. We genetically modeled four human AGO1 mutations in C. elegans by introducing identical mutations into the C. elegans AGO1 homologous gene, alg-1. These alg-1 NDD mutations cause phenotypes in C. elegans indicative of disrupted miRNA processing, miRISC (miRNA silencing complex) formation, and/or target repression. We show that the alg-1 NDD mutations are antimorphic, causing developmental and molecular phenotypes stronger than those of alg-1 null mutants, likely by sequestrating functional miRISC components into non-functional complexes. The alg-1 NDD mutations cause allele-specific disruptions in mature miRNA profiles, accompanied by perturbation of downstream gene expression, including altered translational efficiency and/or messenger RNA abundance. The perturbed genes include those with human orthologs whose dysfunction is associated with NDD. These cross-clade genetic studies illuminate fundamental AGO functions and provide insights into the conservation of miRNA-mediated post-transcriptional regulatory mechanisms.


Assuntos
Proteínas de Caenorhabditis elegans , MicroRNAs , Transtornos do Neurodesenvolvimento , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , MicroRNAs/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Mutação
2.
bioRxiv ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066388

RESUMO

MicroRNAs (miRNA) are endogenous non-coding RNAs important for post-transcriptional regulation of gene expression. miRNAs associate with Argonaute proteins to bind to the 3' UTR of target genes and confer target repression. Recently, multiple de novo coding variants in the human Argonaute gene AGO1 ( hAGO1 ) have been reported to cause a neurodevelopmental disorder (NDD) with intellectual disability (ID). Most of the altered amino acids are conserved between the miRNA-associated Argonautes in H. sapiens and C. elegans , suggesting the hAGO1 mutations could disrupt evolutionarily conserved functions in the miRNA pathway. To investigate how the hAGO1 mutations may affect miRNA biogenesis and/or functions, we genetically modeled four of the hAGO1 de novo variants (referred to as NDD mutations) by introducing the identical mutations to the C. elegans hAGO1 homolog, alg-1 . This array of mutations caused distinct effects on C. elegans miRNA functions, miRNA populations, and downstream gene expression, indicative of profound alterations in aspects of miRNA processing and miRISC formation and/or activity. Specifically, we found that the alg-1 NDD mutations cause allele-specific disruptions in mature miRNA profiles both in terms of overall abundances and association with mutant ALG-1. We also observed allele-specific profiles of gene expression with altered translational efficiency and/or mRNA abundance. The sets of perturbed genes include human homologs whose dysfunction is known to cause NDD. We anticipate that these cross-clade genetic studies may advance the understanding of fundamental Argonaute functions and provide insights into the conservation of miRNA-mediated post-transcriptional regulatory mechanisms.

3.
RNA Biol ; 19(1): 928-942, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35848953

RESUMO

microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression through translational repression and mRNA destabilization. During canonical miRNA biogenesis, several miRNA isoforms, or isomiRs, are produced from a single precursor miRNA. Templated isomiRs are generated through Drosha or Dicer cleavage at alternate positions on either the primary or the precursor miRNAs, generating truncated or extended 5' and/or 3' miRNA ends. As changes to the mature miRNA sequence can alter miRNA gene target repertoire, we investigated the extent of templated isomiR prevalence, providing a profiling map for templated isomiRs across stages of C. elegans development. While most miRNA loci did not produce abundant templated isomiRs, a substantial number of miRNA loci produced isomiRs were just as, or more, abundant than their annotated canonical mature miRNAs. 3' end miRNA alterations were more frequent than the seed-altering 5' end extensions or truncations. However, we identified several miRNA loci that produced a considerable amount of isomiRs with 5' end alterations, predicted to target new, distinct sets of genes. Overall, the presented annotation of templated isomiR dynamics across C. elegans developmental stages provides a basis for further studies into miRNA biogenesis and the intriguing potential of functional miRNA diversification through isomiR production.


Assuntos
Caenorhabditis elegans , MicroRNAs , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo
4.
Sci Rep ; 12(1): 7133, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504914

RESUMO

microRNAs (miRNAs) are crucial for normal development and physiology. To identify factors that might coordinate with miRNAs to regulate gene expression, we used 2'O-methylated oligonucleotides to precipitate Caenorhabditis elegans let-7, miR-58, and miR-2 miRNAs and the associated proteins. A total of 211 proteins were identified through mass-spectrometry analysis of miRNA co-precipitates, which included previously identified interactors of key miRNA pathway components. Gene ontology analysis of the identified interactors revealed an enrichment for RNA binding proteins, suggesting that we captured proteins that may be involved in mRNA lifecycle. To determine which miRNA interactors are important for miRNA activity, we used RNAi to deplete putative miRNA co-factors in animals with compromised miRNA activity and looked for alterations of the miRNA mutant phenotypes. Depletion of 25 of 39 tested genes modified the miRNA mutant phenotypes in three sensitized backgrounds. Modulators of miRNA phenotypes ranged from RNA binding proteins RBD-1 and CEY-1 to metabolic factors such as DLST-1 and ECH-5, among others. The observed functional interactions suggest widespread coordination of these proteins with miRNAs to ultimately regulate gene expression. This study provides a foundation for future investigations aimed at deciphering the molecular mechanisms of miRNA-mediated gene regulation.


Assuntos
Proteínas de Caenorhabditis elegans , MicroRNAs , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , MicroRNAs/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
5.
Genetics ; 220(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34739048

RESUMO

The auxin-inducible degradation system in C. elegans allows for spatial and temporal control of protein degradation via heterologous expression of a single Arabidopsis thaliana F-box protein, transport inhibitor response 1 (AtTIR1). In this system, exogenous auxin (Indole-3-acetic acid; IAA) enhances the ability of AtTIR1 to function as a substrate recognition component that adapts engineered degron-tagged proteins to the endogenous C. elegans E3 ubiquitin ligases complex [SKR-1/2-CUL-1-F-box (SCF)], targeting them for degradation by the proteosome. While this system has been employed to dissect the developmental functions of many C. elegans proteins, we have found that several auxin-inducible degron (AID)-tagged proteins are constitutively degraded by AtTIR1 in the absence of auxin, leading to undesired loss-of-function phenotypes. In this manuscript, we adapt an orthogonal auxin derivative/mutant AtTIR1 pair [C. elegans AID version 2 (C.e.AIDv2)] that transforms the specificity of allosteric regulation of TIR1 from IAA to one that is dependent on an auxin derivative harboring a bulky aryl group (5-Ph-IAA). We find that a mutant AtTIR1(F79G) allele that alters the ligand-binding interface of TIR1 dramatically reduces ligand-independent degradation of multiple AID*-tagged proteins. In addition to solving the ectopic degradation problem for some AID-targets, the addition of 5-Ph-IAA to culture media of animals expressing AtTIR1(F79G) leads to more penetrant loss-of-function phenotypes for AID*-tagged proteins than those elicited by the AtTIR1-IAA pairing at similar auxin analog concentrations. The improved specificity and efficacy afforded by the mutant AtTIR1(F79G) allele expand the utility of the AID system and broaden the number of proteins that can be effectively targeted with it.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Caenorhabditis elegans , Proteínas F-Box , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/metabolismo
6.
Genetics ; 220(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34791245

RESUMO

In Caenorhabditis elegans, germline injection of Cas9 complexes is reliably used to achieve genome editing through homology-directed repair of Cas9-generated DNA breaks. To prevent Cas9 from targeting repaired DNA, additional blocking mutations are often incorporated into homologous repair templates. Cas9 can be blocked either by mutating the PAM sequence that is essential for Cas9 activity or by mutating the guide sequence that targets Cas9 to a specific genomic location. However, it is unclear how many nucleotides within the guide sequence should be mutated, since Cas9 can recognize "off-target" sequences that are imperfectly paired to its guide. In this study, we examined whether single-nucleotide substitutions within the guide sequence are sufficient to block Cas9 and allow for efficient genome editing. We show that a single mismatch within the guide sequence effectively blocks Cas9 and allows for recovery of edited animals. Surprisingly, we found that a low rate of edited animals can be recovered without introducing any blocking mutations, suggesting a temporal block to Cas9 activity in C. elegans. Furthermore, we show that the maternal genome of hermaphrodite animals is preferentially edited over the paternal genome. We demonstrate that maternally provided haplotypes can be selected using balancer chromosomes and propose a method of mutant isolation that greatly reduces screening efforts postinjection. Collectively, our findings expand the repertoire of genome editing strategies in C. elegans and demonstrate that extraneous blocking mutations are not required to recover edited animals when the desired mutation is located within the guide sequence.


Assuntos
Edição de Genes
7.
G3 (Bethesda) ; 11(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33585875

RESUMO

MicroRNAs (miRNAs) and RNA-binding proteins (RBPs) regulate gene expression at the post-transcriptional level, but the extent to which these key regulators of gene expression coordinate their activities and the precise mechanisms of this coordination are not well understood. RBPs often have recognizable RNA binding domains that correlate with specific protein function. Recently, several RBPs containing K homology (KH) RNA binding domains were shown to work with miRNAs to regulate gene expression, raising the possibility that KH domains may be important for coordinating with miRNA pathways in gene expression regulation. To ascertain whether additional KH domain proteins functionally interact with miRNAs during Caenorhabditis elegans development, we knocked down twenty-four genes encoding KH-domain proteins in several miRNA sensitized genetic backgrounds. Here, we report that a majority of the KH domain-containing genes genetically interact with multiple miRNAs and Argonaute alg-1. Interestingly, two KH domain genes, predicted splicing factors sfa-1 and asd-2, genetically interacted with all of the miRNA mutants tested, whereas other KH domain genes showed genetic interactions only with specific miRNAs. Our domain architecture and phylogenetic relationship analyses of the C. elegans KH domain-containing proteins revealed potential groups that may share both structure and function. Collectively, we show that many C. elegans KH domain RBPs functionally interact with miRNAs, suggesting direct or indirect coordination between these two classes of post-transcriptional gene expression regulators.


Assuntos
Proteínas de Caenorhabditis elegans , MicroRNAs , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Filogenia , Fatores de Processamento de RNA , Proteínas de Ligação a RNA/genética
8.
Wiley Interdiscip Rev RNA ; 12(3): e1627, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32954644

RESUMO

microRNAs (miRNAs) play a central role in the regulation of gene expression by targeting specific mRNAs for degradation or translational repression. Each miRNA is post-transcriptionally processed into a duplex comprising two strands. One of the two miRNA strands is selectively loaded into an Argonaute protein to form the miRNA-Induced Silencing Complex (miRISC) in a process referred to as miRNA strand selection. The other strand is ejected from the complex and is subject to degradation. The target gene specificity of miRISC is determined by sequence complementarity between the Argonaute-loaded miRNA strand and target mRNA. Each strand of the miRNA duplex has the capacity to be loaded into miRISC and possesses a unique seed sequence. Therefore, miRNA strand selection plays a defining role in dictating the specificity of miRISC toward its targets and provides a mechanism to alter gene expression in a switch-like fashion. Aberrant strand selection can lead to altered gene regulation by miRISC and is observed in several human diseases including cancer. Previous and emerging data shape the rules governing miRNA strand selection and shed light on how these rules can be circumvented in various physiological and pathological contexts. This article is categorized under: RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.


Assuntos
MicroRNAs , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Interferência de RNA , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo
12.
J Vis Exp ; (159)2020 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-32510481

RESUMO

Co-immunoprecipitation methods are frequently used to study protein-protein interactions. Confirmation of hypothesized protein-protein interactions or identification of new ones can provide invaluable information about the function of a protein of interest. Some of the traditional methods for extract preparation frequently require labor-intensive and time-consuming techniques. Here, a modified extract preparation protocol using a bead mill homogenizer and metal beads is described as a rapid alternative to traditional protein preparation methods. This extract preparation method is compatible with downstream co-immunoprecipitation studies. As an example, the method was used to successfully co-immunoprecipitate C. elegans microRNA Argonaute ALG-1 and two known ALG-1 interactors: AIN-1, and HRPK-1. This protocol includes descriptions of animal sample collection, extract preparation, extract clarification, and protein immunoprecipitation. The described protocol can be adapted to test for interactions between any two or more endogenous, endogenously tagged, or overexpressed C. elegans proteins in a variety of genetic backgrounds.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Imunoprecipitação/métodos , Animais , Núcleo Celular/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Extratos de Tecidos/metabolismo
13.
PLoS Genet ; 15(10): e1008067, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31584932

RESUMO

microRNAs (miRNAs) are potent regulators of gene expression that function in diverse developmental and physiological processes. Argonaute proteins loaded with miRNAs form the miRNA Induced Silencing Complexes (miRISCs) that repress gene expression at the post-transcriptional level. miRISCs target genes through partial sequence complementarity between the miRNA and the target mRNA's 3' UTR. In addition to being targeted by miRNAs, these mRNAs are also extensively regulated by RNA-binding proteins (RBPs) through RNA processing, transport, stability, and translation regulation. While the degree to which RBPs and miRISCs interact to regulate gene expression is likely extensive, we have only begun to unravel the mechanisms of this functional cooperation. An RNAi-based screen of putative ALG-1 Argonaute interactors has identified a role for a conserved RNA binding protein, HRPK-1, in modulating miRNA activity during C. elegans development. Here, we report the physical and genetic interaction between HRPK-1 and ALG-1/miRNAs. Specifically, we report the genetic and molecular characterizations of hrpk-1 and its role in C. elegans development and miRNA-mediated target repression. We show that loss of hrpk-1 causes numerous developmental defects and enhances the mutant phenotypes associated with reduction of miRNA activity, including those of lsy-6, mir-35-family, and let-7-family miRNAs. In addition to hrpk-1 genetic interaction with these miRNA families, hrpk-1 is required for efficient regulation of lsy-6 target cog-1. We report that hrpk-1 plays a role in processing of some but not all miRNAs and is not required for ALG-1/AIN-1 miRISC assembly. We suggest that HRPK-1 may functionally interact with miRNAs by both affecting miRNA processing and by enhancing miRNA/miRISC gene regulatory activity and present models for its activity.


Assuntos
Proteínas Argonautas/genética , Caenorhabditis elegans/genética , Desenvolvimento Embrionário/genética , Complexo de Inativação Induzido por RNA/genética , Regiões 3' não Traduzidas/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/genética , MicroRNAs/genética , Domínios Proteicos/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética
14.
Proc Natl Acad Sci U S A ; 112(38): E5271-80, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26351692

RESUMO

MicroRNAs are regulators of gene expression whose functions are critical for normal development and physiology. We have previously characterized mutations in a Caenorhabditis elegans microRNA-specific Argonaute ALG-1 (Argonaute-like gene) that are antimorphic [alg-1(anti)]. alg-1(anti) mutants have dramatically stronger microRNA-related phenotypes than animals with a complete loss of ALG-1. ALG-1(anti) miRISC (microRNA induced silencing complex) fails to undergo a functional transition from microRNA processing to target repression. To better understand this transition, we characterized the small RNA and protein populations associated with ALG-1(anti) complexes in vivo. We extensively characterized proteins associated with wild-type and mutant ALG-1 and found that the mutant ALG-1(anti) protein fails to interact with numerous miRISC cofactors, including proteins known to be necessary for target repression. In addition, alg-1(anti) mutants dramatically overaccumulated microRNA* (passenger) strands, and immunoprecipitated ALG-1(anti) complexes contained nonstoichiometric yields of mature microRNA and microRNA* strands, with some microRNA* strands present in the ALG-1(anti) Argonaute far in excess of the corresponding mature microRNAs. We show complex and microRNA-specific defects in microRNA strand selection and microRNA* strand disposal. For certain microRNAs (for example mir-58), microRNA guide strand selection by ALG-1(anti) appeared normal, but microRNA* strand release was inefficient. For other microRNAs (such as mir-2), both the microRNA and microRNA* strands were selected as guide by ALG-1(anti), indicating a defect in normal specificity of the strand choice. Our results suggest that wild-type ALG-1 complexes recognize structural features of particular microRNAs in the context of conducting the strand selection and microRNA* ejection steps of miRISC maturation.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/fisiologia , Animais , Sequência de Bases , Northern Blotting , Proteínas de Caenorhabditis elegans/genética , DNA Complementar/metabolismo , Biblioteca Gênica , Espectrometria de Massas , Dados de Sequência Molecular , Mutação , Proteômica , Proteínas de Ligação a RNA/genética , Termodinâmica
15.
PLoS Genet ; 10(4): e1004286, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24763381

RESUMO

microRNAs function in diverse developmental and physiological processes by regulating target gene expression at the post-transcriptional level. ALG-1 is one of two Caenorhabditis elegans Argonautes (ALG-1 and ALG-2) that together are essential for microRNA biogenesis and function. Here, we report the identification of novel antimorphic (anti) alleles of ALG-1 as suppressors of lin-28(lf) precocious developmental phenotypes. The alg-1(anti) mutations broadly impair the function of many microRNAs and cause dosage-dependent phenotypes that are more severe than the complete loss of ALG-1. ALG-1(anti) mutant proteins are competent for promoting Dicer cleavage of microRNA precursors and for associating with and stabilizing microRNAs. However, our results suggest that ALG-1(anti) proteins may sequester microRNAs in immature and functionally deficient microRNA Induced Silencing Complexes (miRISCs), and hence compete with ALG-2 for access to functional microRNAs. Immunoprecipitation experiments show that ALG-1(anti) proteins display an increased association with Dicer and a decreased association with AIN-1/GW182. These findings suggest that alg-1(anti) mutations impair the ability of ALG-1 miRISC to execute a transition from Dicer-associated microRNA processing to AIN-1/GW182 associated effector function, and indicate an active role for ALG/Argonaute in mediating this transition.


Assuntos
Proteínas Argonautas/genética , Proteínas de Transporte/genética , MicroRNAs/genética , Mutação/genética , Alelos , Sequência de Aminoácidos , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Sequência Conservada , Regulação da Expressão Gênica no Desenvolvimento/genética , Dados de Sequência Molecular , Proteínas Repressoras/genética , Alinhamento de Sequência
16.
Science ; 340(6130): 372-376, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23599497

RESUMO

Like mammalian neurons, Caenorhabditis elegans neurons lose axon regeneration ability as they age, but it is not known why. Here, we report that let-7 contributes to a developmental decline in anterior ventral microtubule (AVM) axon regeneration. In older AVM axons, let-7 inhibits regeneration by down-regulating LIN-41, an important AVM axon regeneration-promoting factor. Whereas let-7 inhibits lin-41 expression in older neurons through the lin-41 3' untranslated region, lin-41 inhibits let-7 expression in younger neurons through Argonaute ALG-1. This reciprocal inhibition ensures that axon regeneration is inhibited only in older neurons. These findings show that a let-7-lin-41 regulatory circuit, which was previously shown to control timing of events in mitotic stem cell lineages, is reutilized in postmitotic neurons to control postdifferentiation events.


Assuntos
Axônios/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , MicroRNAs/metabolismo , Regeneração Nervosa/fisiologia , Neurônios/fisiologia , Fatores de Transcrição/metabolismo , Envelhecimento/fisiologia , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , MicroRNAs/genética , Microtúbulos/fisiologia , Regeneração Nervosa/genética , Neurogênese , Neurônios/citologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
17.
Genetics ; 179(3): 1357-71, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18622031

RESUMO

Members of the Wnt family of secreted glycoproteins regulate many developmental processes, including cell migration. We and others have previously shown that the Wnts egl-20, cwn-1, and cwn-2 are required for cell migration and axon guidance. However, the roles in cell migration of all of the Caenorhabditis elegans Wnt genes and their candidate receptors have not been explored fully. We have extended our analysis to include all C. elegans Wnts and six candidate Wnt receptors: four Frizzleds, the sole Ryk family receptor LIN-18, and the Ror receptor tyrosine kinase CAM-1. We show that three of the Wnts, CWN-1, CWN-2, and EGL-20, play major roles in directing cell migrations and that all five Wnts direct specific cell migrations either by acting redundantly or by antagonizing each other's function. We report that all four Frizzleds function to direct Q-descendant cell migrations, but only a subset of the putative Wnt receptors function in directing migrations of other cells. Finally, we find striking differences between the phenotypes of the Wnt quintuple and Frizzled quadruple mutants.


Assuntos
Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Movimento Celular , Neurônios/citologia , Transdução de Sinais , Proteínas Wnt/metabolismo , Animais , Embrião não Mamífero/citologia , Receptores Frizzled/metabolismo , Ligação Proteica
18.
Dev Biol ; 289(1): 229-42, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16313898

RESUMO

Histone proteins play integral roles in chromatin structure and function. Histones are subject to several types of posttranslational modifications, including acetylation, which can produce transcriptional activation. The converse, histone deacetylation, is mediated by histone deacetylases (HDACs) and often is associated with transcriptional silencing. We identified a new mutation, cw2, in the Caenorhabditis elegans hda-1 gene, which encodes a histone deacetylase. Previous studies showed that a mutation in hda-1, e1795, or reduction of hda-1 RNA by RNAi causes defective vulval and gonadal development leading to sterility. The hda-1(cw2) mutation causes defective vulval development and reduced fertility, like hda-1(e1795), albeit with reduced severity. Unlike the previously reported hda-1 mutation, hda-1(cw2) mutants are viable as homozygotes, although many die as embryos or larvae, and are severely uncoordinated. Strikingly, in hda-1(cw2) mutants, axon pathfinding is defective; specific axons often appear to wander randomly or migrate in the wrong direction. In addition, the long range migrations of three neuron types and fasciculation of the ventral nerve cord are defective. Together, our studies define a new role for HDA-1 in nervous system development, and provide the first evidence for HDAC function in regulating neuronal axon guidance.


Assuntos
Axônios/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/crescimento & desenvolvimento , Movimento Celular , Histona Desacetilases/fisiologia , Sistema Nervoso/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/análise , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Movimento Celular/genética , Dosagem de Genes , Expressão Gênica , Histona Desacetilases/análise , Histona Desacetilases/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação de Sentido Incorreto
19.
Dev Biol ; 285(2): 447-61, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16109397

RESUMO

Members of the Frizzled family of integral membrane proteins are implicated in many developmental events, including specifying cell fate, orienting cell and planar polarity, and directing cell migration. Frizzleds function as cell surface receptors for secreted Wnt proteins. We report here the isolation of a mutation in cfz-2, a Caenorhabditis elegans Frizzled gene. Mutation of cfz-2 causes defective cell migration, disorganization of head neurons, and can cause ectopic axon outgrowth. Analysis of mosaic animals shows that CFZ-2 functions cell nonautonomously, but does not rule out an autonomous role. CFZ-2 is expressed primarily in the anterior of embryos and in several cells in the head of adults. Our analysis of interactions between CFZ-2 and other Wnt pathways reveals that three Wnts, CWN-1, CWN-2 and EGL-20, and a Frizzled, MOM-5, function redundantly with one another and with CFZ-2 for specific cell migrations. In contrast, CWN-1, CWN-2, EGL-20, CFZ-2, and MOM-5 antagonize one another for other migrations. Therefore, CFZ-2 functions by collaborating with and/or antagonizing other Wnt signaling pathways to regulate specific cell migrations.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Movimento Celular/fisiologia , Receptores Frizzled/metabolismo , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , Sequência de Aminoácidos , Análise de Variância , Animais , Axônios/fisiologia , Sequência de Bases , Proteínas de Caenorhabditis elegans/genética , Movimento Celular/genética , Mapeamento Cromossômico , Clonagem Molecular , Primers do DNA , Receptores Frizzled/genética , Perfilação da Expressão Gênica , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação/genética , Análise de Sequência de DNA , Transdução de Sinais/genética
20.
J Exp Zool B Mol Dev Evol ; 297(1): 57-64, 2003 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12955844

RESUMO

Huntington's disease is a progressive neuro-degenerative disorder in humans, which is scharacterized by onset of dementia, muscular ataxia, and death. Huntington's disease is caused by the expansion of the polyglutamine (polyQ) tract in the N-terminus of the HD protein (Huntingtin). CAG expansion is a dominant gain of function mutation that affects striated neurons in the brain (Cattaneo, 2003, News Physiol Sci 18:34). The evolutionary origins of the vertebrate Hd gene are not well understood. In order to address the evolutionary history of the Hd gene, we have cloned and characterized the expression of the Hd gene in two invertebrate deuterostomes, an echinoderm and an ascidian, and have examined the expression patterns in a phylogenetic context. Echinoderms are basal deuterostomes and ascidians are basal chordates; both are useful for understanding the origins of and evolutionary trends in genes important in vertebrates such as the Huntigton's disease gene. Expression of Hd RNA is detected at all stages of development in both the echinoderm and ascidian studied. In the echinoderm Heliocidaris erythrogramma, Hd is expressed in coelomic mesodermal tissue derivatives, but not in the central nervous system. In the ascidian Halocynthia roretzi expression is located in both mesoderm and nervous tissue. We suggest that the primitive deuterostome expression pattern is not neural. Thus, neural expression of the Hd gene in deuterostomes may be a novel feature of the chordate lineage, and the original role(s) of HD in deuterostomes may have been non-neural.


Assuntos
Cordados não Vertebrados/genética , Equinodermos/genética , Perfilação da Expressão Gênica , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Filogenia , Sequência de Aminoácidos , Animais , Hibridização In Situ , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...